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Abstract We provide a consistent treatment of the known

solid-state phases of mercury to high pressure to determine

the phase changes at 0 K by using the local density approx-

imation (LDA). We obtain good agreement with experi-

mental measurements demonstrating that LDA performs

well in the repulsive region of the inter-atomic interaction.

The known a-, b-, c-, and d-phases of mercury differ ener-

getically by no more than 0.04 eV and therefore provide a

challenge to future high accuracy calculations using either

wavefunction or density functional-based approximations.

Keywords Mercury � Hg � High pressure � Solid state �
Structure � Density functional theory

1 Introduction

Mercury is an extraordinary element with many unique

properties that are still not fully understood [1]. With an

exceptionally low melting temperature of 234.3 K [2] it is

the only liquid metal at room temperature with a very

broad temperature range for the liquid state compared to

other metals [3]. Only very few other metals solidify at

rather low temperature, those are cesium, francium, gal-

lium, and rubidium. The low melting temperature of mer-

cury is assumed to be of relativistic origin [4], i.e., a

consequence of the very strong relativistic 6s orbital con-

traction/stabilization, which substantially influences the

chemistry and physics of mercury [1] leading often to

surprising results [5–7]. Here, we mention that the high

superconducting transition temperature of Hg (4.15 K) in

contrast to Zn (0.85 K) or Cd (0.52 K) [8] has been sug-

gested to be of relativistic origin [9] (see also the discus-

sion in ref. [10]). Furthermore, it has been observed that

electronic properties, in particular, the electrical conduc-

tivity, of liquid mercury are special as they are strongly

dependent on the density of the liquid [11].
In its solid state, mercury is equally interesting, as an

early investigation by McKeehan and Cioffi [12] deter-

mined a rhombohedral structure at -115�C with a lattice

constant of a = 3.025 Å and a rhombohedral angle of

a = 70�31.70, as shown in Fig. 1. This so-called a-phase

(space group R3m or 166) was the first simple rhombo-

hedral arrangement observed for an elementary substance

and has even now only been found as a high-pressure

phase of lithium [13]. The question was raised whether a

closer packing (hcp) could be possible, similarly to what

is found for other members of the same group such as Zn,

Cd, and Mg [14]. The origin of the unusual solid-state

structure of mercury has been investigated extensively

using theoretical methods by Singh, Paulus, Gaston, and

others and could be explained by a subtle interplay

between relativistic effects and the influence of electron

correlation [15–19].
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The high-pressure behavior of mercury is not less

intriguing since it gives rise to quite unique crystal struc-

tures as well, as shown in Fig. 1. Experimental studies have

revealed that, if investigated at room temperature, at

approximately 1.2 GPa liquid mercury solidifies into the

rhombohedral a-Hg structure. A transformation into the b-

phase is observed at 3.4 GPa [20]. It has a body-centred

tetragonal structure with space-group I4/mmm (139). This

rearranges into the c-Hg phase at 12 GPa [21, 22], for

which Schulte and Holzapfel first suggested an ortho-

rhombic arrangement. However, using angle-dispersive

powder X-ray diffraction, Takemura et al. [20] obtained a

monoclinic crystal structure with six atoms in the unit cell

(space group C2/m or 12). The atoms are placed at the 2a

(0, 0, 0) and 4i (x, 0, z) positions. Takemura et al. [20]

specifically emphasize a need for further theoretical

investigations of the c-phase to confirm its stability.

Finally, the c-phase transforms into the hexagonal close-

packed (hcp) structure at high pressure of 37 GPa [21] that

remains stable up to at least 193 GPa [20], or perhaps even

1 TPa according to first-principles calculations [23]. It is

known as d-Hg (P63/mmc or 194), and the structure has a

rather large c/a-ratio, similarly to the respective phase

in Zn and Cd. This leads to the following transition path:

a-Hg �!3:4GPa
b-Hg �!12GPa

c-Hg �!37GPa
d-Hg. The corresponding

phase diagram is shown in Fig. 2.

While those phases are frequently studied experimen-

tally, little effort has been put into computational investi-

gations (except for a- and d-Hg [15–19, 24]). Interesting is

especially the transition under extremely high pressure into

the close-packed system. In addition to the observed hcp

phase, a close-packed face-centred cubic arrangement

could also be possible. Here, we note that large differences

between hcp and fcc structures originate from large con-

tributions from three- and higher body forces or even

quantum fluctuations, as simple two-body interactions give

only small energy differences between the two closed-

packed structures [25, 26]. Theoretical studies of those two

structures in comparison with the experimentally observed

arrangements could shed some light on the question, why

for mercury hcp is favored over the fcc structure. Hence,

we decided to perform local density functional calculations

for the different known phases of solid mercury, which

might raise interest in future investigations using more

elaborate and accurate wavefunction and density func-

tional-based approximations. We note that it still remains a

major challenge to modern quantum chemistry to suc-

cessfully model the phase transitions at various tempera-

tures and pressures by first principle methods.

2 Computational methods

Periodic calculations based on density functional theory by

means of the localized density approximation (LDA) [27]

in conjunction with a plane-wave basis set as implemented

in the Vienna Ab-initio Simulation Package VASP [28, 29]

were performed. Note that the LDA was found to give good

results for metallic mercury in the overlap region, while

other gradient corrected density functionals failed and led

to weak or even no binding for the solid phase [30]. It was

pointed out recently that the binding in solid mercury is

purely an electron correlation effect [17], and adding exact

exchange to the density functional has, therefore, a desta-

bilizing effect [30]. Nevertheless, we briefly discuss the

performance of other functionals as well, i.e., PW91

according to Perdew and Wang [31, 32], PBE by Perdew,

Fig. 1 Crystal structures for the different phases of mercury: a a-Hg,

rhombohedral; b b-Hg, I4/mmm; c c-Hg, C2/m; d d-Hg, hcp. Dark
blue colored atoms represent sites with multiplicity 1a, 2a or 2c; light
blue sites with multiplicity 4i. Yellow labeled atoms indicate the

closest Hg–Hg bond
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Fig. 2 Pressure–temperature phase diagram of mercury obtained

from data in ref. [22]
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Burke and Ernzerhof [33], as well as the revised PBE func-

tional for solids (PBEsol) [34]. In addition, the DFT-D2

method of Grimme has been employed in conjunction with the

global scaling parameter s6 as optimized for PBE (s6 = 0.75)

[35, 36], abbreviated as PBE-D in the following.

The projector augmented-wave (PAW) method includ-

ing scalar relativistic effects in the valence space from the

pseudopotential approximation [29, 37–39] was employed

to describe the interaction of the atomic core region with

the explicitly treated (outermost 5d plus 6s) valence elec-

trons. This allows to reduce the number of plane waves per

atom to a minimum while achieving a high accuracy

treatment of the Hg-5d electrons. After carefully checking

for convergence, plane waves with kinetic energies of up to

29.4 Ry were included. The integrations over the Brillouin

zone for the calculation of the electronic densities and total

energies are substituted by summations over a specially

weighted uniform Monkhorst-Pack type [40] k-point mesh

that includes the C-point and was thoroughly tested to

assure converged results.

For the determination of the equilibrium properties

(unless otherwise stated), a full geometry optimization was

carried out for the different crystal structures, while

keeping the unit-cell volume constant. By those means, the

cell shape as well as the internal parameters were allowed

to relax for a band of fixed unit-cell volumes and the

according total energy calculated. The obtained energy–

volume dependencies were then fitted to the Murnaghan

equation of state [41], which immediately gives the equi-

librium volume V0, the total energy per atom E0 at zero K,

the zero-pressure bulk modulus B0 as well as its pressure

derivative B0 = dB/dp. From the total energy per atom E0,

the cohesive energy (atomization) was calculated by sub-

tracting the total atomic energy. The latter was determined

beforehand in single atom calculations in a carefully con-

verged box size, where the plane-wave cutoff was chosen

to be equivalent to the one used for the crystal structure

optimization.

Since our calculations are limited to low temperatures

and neglect phonon contributions, the in fact suitable ther-

modynamic potential, the Gibbs free energy G = U ?

pV - TS, can be approximated by the enthalpy of the sys-

tem H = E ? pV (U(V) & E(V)). Hence, the transition

pressures are predicted from the crossing of two graphs of

different structures in the H(p)-plot. The zero-point energy

is neglected which is estimated to be 0.01 eV [18].

3 Results and discussion

The calculated energy–volume dependencies for the

according crystallographic phases of bulk mercury using

LDA are depicted in Fig. 3. The experimentally observed

trend with increasing pressure is confirmed. We find a

ground-state volume of 23.14 Å3 for the rhombohedral a-

phase in good agreement with other theoretical and

experimental work (see Table 1). While the lattice

parameter of 2.947 Å compares well to the experimentally

observed values (e.g., 2.986 Å at 5 K [42]), this is not the

case for the rhombohedral angle. It is calculated to be

74.21�, overestimating the actual value of 70.74� (at 5 K)

[42]. However, the potential energy surface is rather shal-

low along the rhombohedral angle as pointed out before by

Gaston et al. [18]. As expected, the LDA cohesive energy

of 0.966 eV is overestimated compared to the experimen-

tally estimated value of 0.67 eV [47]). As mentioned

before, this weak performance of density functional theory

has been the subject of an intensive study by Gaston et al.

[18, 19], who found even larger discrepancies (not only for

the cohesive energy, but even for the crystallographic

parameters) for PBE, PW91, PB86, and B3LYP (see also

Table 1), and LDA has been found to be still the most

reliable functional for mercury in its solid state. However, a

significant improvement of the results could be achieved

using an explicit treatment of electron correlation in terms

of the incremental method [43] or the random-phase

approximation recently implemented by Harl and Kresse or

Scuseria and co-workers [44–46], which are, however, very

computer time intensive. For the bulk modulus, a value of

25.9 GPa along with a pressure constant of 11.1 is deter-

mined using the full geometry optimization. This is in

acceptable agreement with experimental results as can be

read from Table 1, and similar values have been obtained

in other theoretical studies. As expected, the bulk modulus

obtained from the incremental method by Gaston and

coworkers [18] again seems to be much more reliable.

To further investigate the nature of the a-Hg phase, the

rhombohedral structure can be considered as a rhombohe-

dral distortion of the fcc lattice. The primitive unit vectors

can then be expressed as a!1 ¼ a0ð1þ x; x; xÞ; a!2 ¼
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Fig. 3 Cohesive energy versus volume per atom for different crystal

structures of bulk mercury from LDA calculations
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Table 1 Ground-state properties of different mercury phases

Property This work Other theoretical Experiments

a-Hg

a 2.947 2.971/3.894/3.535/3.540a, 2.96b 2.986/2.993d, 3.005e

a 74.21 72.6/89.5/61.2/60.9a, 69.5b 70.74d, 70.53e

V0 23.14 23.23/59.04/32.08/32.00a, 21.97b, 23.04c 22.99/23.15d, 23.35e

B0 25.9 18.7a, 36.0b, 67.6c, 38.2c, 32.2f

B0 11.1

Ecoh -0.966 -0.918/-0.044/-0.195/-0.164a, -0.649b -0.67e

pt to b 6.5 3.7g,h, 3.4i

b-Hg

a 4.022 (3.714) (3.688)i, 3.995k

c 2.793 (2.785) (2.800)i, 2.825k

c/a 0.694 (0.750) (0.759)i, 0.706k

V0 22.60 (19.21) (20.8)g, 24.0h, (19.04)i, 22.54k

B0 52.3 (81)g, 35h

B0 4.2 (2)g, 7.0h

Ecoh -0.957

pt to c 9.3 12g,h

c-Hg

a (5.192) (2.691)g, (5.179)i

b (2.826) (4.457)g, (2.797)i

c (7.849) (6.454)g, (7.964)i

b (108.18) (107.96)i

b/a (0.544) (0.540)i

c/a (1.512) (1.538)i

x (0.770) (0.762)i

z (0.335) (0.333)i

V0 22.21 (18.25) (18.7)g, 23.9h, (18.29)i

B0 60.3 (267)g, 22h

B0 5.3 (8.5)g, 13.5h

Ecoh -0.946

pt to d 35.6 37g, 35–43i

d-Hg

a 3.067 (2.810) 3.06a, 3.58j, (*2.9)k (2.815)i,

c 5.493 (4.866) (*5.0)k (4.927)i,

c/a 1.791 (1.732) (*1.7)k (1.750)i

V0 22.37 (16.64) (*17.5)k (16.14)g, 22.5h, (16.91)i

B0 49.1 19a, 21j (271)g, 78h

B0 5.6 (4.2)g, 4.2h

Ecoh -0.938 -0.813a

Presented are the lattice constants a, b, and c (Å), angles a and b, respective internal parameters, ground-state volume V0 (Å3/atom), bulk modulus B0 (GPa) and its
pressure derivative B0 as well as the cohesive energy Ecoh (eV) and the transition pressure pt (GPa) where applicable. Values in brackets indicate a higher pressure
above the transition (see legend of references below), i.e., 15.0, 20.9, and 40.5 GPa for b-, c-, and d-Hg, respectively, for this work
a LDA/B3LYP/PW91/PBE DFT from ref. [18]
b Incremental electron correlation (up to 3-body terms) from ref. [18]
c GTP-LDA from ref. [23] and refs. therein
d X-ray powder diffraction (XRD) at 1 Pa and 5 K/78 K from ref. [42]
e At 225.15 K from ref. [47]
f From ref. [48]
g Energy-dispersive X-ray diffraction (EDXD) at 8 (b-Hg), 27 (c-Hg) and 40 GPa (d-Hg) from ref. [21]
h EDXD from ref. [22]
i XRD from ref. [20] at 20 (c-Hg) and 35.2 GPa (d-Hg) and refs. therein (at 15 GPa for b-Hg)
j LMTO from ref. [16]
k FPLAPW-GGA at 0 K and *40 GPa from ref. [24] and refs. therein (at 77 K)
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a0ðx; 1þ x; xÞ; a!3 ¼ a0ðx; x; 1þ xÞ, where the parameter

x is a qualitative measure of the grade of distortion. Hence,

x = 1/3 (a = 60�) equals the fcc structure. Similarly, this

description also immediately yields the bcc and sc struc-

tures for x = -1/6 (a = 109.5�) and x = 0 (a = 90�),

respectively (see Table 3 for the ground-state properties of

the cubic structures). This way it is possible to map the

total energy depending on the volume V of the unit cell and

the parameter x, where the experimentally observed value

for the rhombohedral angle is equivalent to x = 0.19. The

resulting potential energy curves with varying parameter

x for different volumina are shown in Fig. 4, with a two-

dimensional view of the total energy versus volume in

Fig. 5. Only for the red curve in Fig. 4, equivalent to a

unit-cell volume of 22.5 Å3, lattice parameters of

a = 70.8� and a = 2.964 Å can be obtained, closely

resembling the experimental results. Furthermore, this

curve compares well to early theoretical investigations by

Weaire [49] and Moriarty [23]. However, toward higher

volumes (dashed lines), the minimum slowly converges to

x = 0. Hence, for negative pressures, the rhombohedral

phase of mercury becomes identical to the simple cubic

structure, see also Fig. 3. On the other hand, with

increasing pressures (solid lines), the minimum quickly

moves toward the fcc structure (x = 1/3). This is in dis-

agreement with previous work [18], where a simple cubic

structure at small bond distances, and fcc at larger bond

distances was obtained (NB: these published curves were

not fully optimized E(V) curves and obtained with small

Gaussian basis sets). The second lowest minimum, found

around x = -0.1 (a & 50�), can be interpreted as c-Hg,

indicating a distortion of the fcc lattice in opposite direc-

tion of a-Hg according to ref. [23].
To discuss the validity for our choice to apply the

LDA, the potential energy surface with respect to the

rhombohedral distortion x and the unit-cell volume V have

also been calculated using the generalized gradient

approximation (GGA) [50], i.e., PW91 [31, 32], PBE [33],

PBEsol [34], and PBE-D [35, 36]. The results are also

shown in Fig. 5 and clearly confirm that none of the

investigated functionals perform as well as LDA. The

standard functionals PBE and PW91 predict fcc and sc,

respectively, to be more stable than the a-Hg structure as

also shown by Table 2. The obtained cohesive energies and

ground-state volumes are in excellent agreement with a

study by Gaston et al. [18] (see Table 1), even though the

respective authors calculate fcc as the ground-state struc-

ture for both functionals. However, it should be acknowl-

edged that the differences in cohesive energy, in particular,

for PW91, are very small. In general, both functionals

severely underestimate the cohesive energies while
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Fig. 4 Variation of the total energy with respect the rhombohedral

distortion x. The red graph shows the optimized volume (with respect

to experimental results) for the a-Hg structures, whereas the black
solid and dashed lines indicate curves of lower and higher volumes

(in steps of 0.5 Å3), respectively

Fig. 5 Potential energy surface plotted with respect to the unit-cell

volume per atom as well as the rhombohedral distortion x for a variety

of density functionals. The color bar down the right-hand side
indicates the cohesive energy per atom in eV. The energy difference

between contour lines is 25 (PBE-D), 15 (LDA and PBEsol), and 7.5

meV (PBE and PW91), respectively. The obtained structure is equal

to the bcc, sc, and fcc lattice if x = -1/6, 0, and 1/3, respectively
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overestimating the ground-state volume. Surprisingly, the

dispersion corrected PBE-D functional performs just as

bad, strongly favouring the fcc arrangement over the a-Hg

structure. However, the calculated energies are more rea-

sonable than with PBE or PW91. On the other hand,

PBEsol gives very good results for the optimized geometry,

being the only functional that also correctly predicts a-Hg

to be the preferred structure. The calculated ground-state

volume of 24.22 Å3/atom and the lattice constant

a = 3.023 Å is in rather good agreement with experi-

mental results. Comparison is even better for the rhom-

bohedral angle a = 71.85� (see Table 1 for experimental

values). With respect to the predicted structure, PBEsol,

hence, performs even better than LDA. Yet, the functional

fails to predict the correct cohesive energy, which makes it

unsuitable for the determination of transition pressures to

investigate the high-pressure behavior of solid mercury.

We mention that for the PBE, GGA, and PBE-D calcula-

tions, the ground-state properties for the a-Hg phase may

not be as accurate as the results for LDA and PBEsol. This

is due to the fact that, for those functionals, with increasing

volumes, the a-Hg phase becomes too unstable with respect

to the fcc or sc arrangement (depending on the according

functional). Since the structure optimization is carried out

under the constraint of keeping the volume constant, the

respective rhombohedral angle, therefore, simply con-

verges to 60 or 90�, respectively. Hence, the ground-state

properties for the a-Hg phase were obtained by fitting the

Murnaghan equation of state to only the data points that

converged to the actual a-Hg structure.

Generally, the question remains why we should predict

a-Hg as the equilibrium phase of mercury. At low tem-

peratures and low pressures, mercury is known to crystal-

lize in the b-Hg structure according to the phase diagram

derived by Schulte and Holzapfel [22] (see Fig. 2). These

authors assume the values for the a - b transition mainly

from ref. [51]. However, they observed the transition only

down to a value of 1 kbar at which the transition occurs at

approximately 98 K. The slope could well be steeper at

lower pressures adding uncertainty to the relative stability

of both phases. In addition, an experimental study by

Barrett [42] investigates the rhombohedral a-phase down to

a temperature of 5 K. Nevertheless, from the theoretical

point of view, the energy difference between both struc-

tures is only 0.02 eV at the LDA level of theory. The zero-

point energy difference between both structures is expected

to be of a few meV (from the Debye temperature of mer-

cury or from cluster extrapolations [30], we obtain a zero-

point vibrational energy between 0.008 and 0.01 eV for

solid mercury [19]). Yet, keeping this in mind, we predict

that the a-Hg phase transforms into b-Hg at approximately

6.5 GPa. This is in perhaps fortuitous good agreement with

the experimental findings of Schulte and Holzapfel who

observe the transition at 3.7 GPa (obtained, however, at

room temperature) [21, 22]. However, a correct treatment

of this phase transition requires more sophisticated meth-

ods and the inclusion of thermal effects.

For the b-phase of mercury, we calculate a ground-state

volume of 22.60 Å3 per atom along with a cohesive energy

of -0.957 eV. Both parameters are very close to the

rhombohedral arrangement. The corresponding values for

the lattice parameters are a = 4.022 Å and c = 2.793 Å

(c/a = 0.694), in very good agreement with the experi-

mental results (see Table 1). The bulk modulus of 52.3

GPa and its pressure derivative (4.2), however, deviate

strongly from experiment, which is rather common in DFT

calculations in general. Moreover, finite temperature

effects, which we neglect, are important for the bulk

modulus. Unfortunately, no other theoretical work could be

found to compare to. At a pressure of 15.0 GPa above the

calculated transition pressure, but at a comparable value to

ref. [20], we obtain V = 19.21 Å3, a = 3.714 Å,

c = 2.785 Å (c/a = 0.750), in excellent agreement with

their work.

At approximately 9.3 GPa, the b-Hg phase transforms

into the c-Hg structure. This is again in good agreement

with experimental results (pt = 12 GPa [21]). Even though

Schulte and Holzapfel [22] suggested an orthorhombic

arrangement for this phase, the structure could not be

clearly resolved, and hence, the newly suggested mono-

clinic structure [20] has been investigated here. For this

monoclinic structure, the estimated ground-state volume of

V0 = 22.21 Å3/atom at zero pressure agrees with the

experimental data (see Table 1). However, with increasing

volume, the c-Hg structure seems to become energetically

less stable and it was not possible to get converged results

for this crystallographic arrangement above a volume of

V = 21.6 Å3 per atom. The given ground-state volume,

bulk modulus (B0 = 60.3 GPa), and its pressure derivative

(B0 = 5.3) are therefore predicted only from the fit of the

Murnaghan EOS to the points available and hence deviate

rather strongly from the experimental data available.

Consequently, it was also not possible to obtain results for

the lattice constants and the internal parameters at 0 Pa.

Table 2 Comparison of the ground-state properties of the a, fcc, and

sc mercury phases calculated using different density functionals

Functional a-Hg fcc sc

Ecoh V0 Ecoh V0 Ecoh V0

PBE-D -1.067 26.77 -1.175 32.95 -1.001 23.81

PBEsol -0.551 24.22 -0.536 23.58 -0.540 26.03

PBE -0.160 30.18 -0.167 33.12 -0.159 30.43

PW91 -0.204 28.99 -0.203 31.73 -0.205 29.78

Presented are the ground-state volume V0 (Å3/atom) and the cohesive

energy Ecoh (eV). See Table 1 to compare to other theoretical results
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However, at a pressure of 20.9 GPa above the transition,

the ground-state volume and lattice parameters are as fol-

lows: a = 5.192 Å, b = 2.826 Å, c = 7.849 Å, b/

a = 0.544, c/a = 1.512, and V = 18.25 Å3. The Wyckoff

parameters are x = 0.770 and y = 0.335. Those values

compare very well to experiment, in particular, if one

considers the large number of the degrees freedom for this

crystallographic structure. Moreover, the values are in

excellent agreement with results of Takemura and

coworkers (see Table 1). Hence, we conclude that indeed

the monoclinic C2/m structure should be considered as the

high-pressure c-phase for mercury. Furthermore, it is

mentioned that the energy difference between the a- and

the proposed c-phase in the calculation of Moriarty [23] as

estimated from the figures is 0.025 eV. This is comparable

to the value obtained here (DEcohðc� aÞ ¼ 0:020 eV).

At higher pressures, the lattice parameters slowly con-

verge toward the close-packed hexagonal structure and at

35.6 GPa the transformation into the d-Hg phase is finally

achieved. Takemura et al. suggest the coexistence of the c-

and the d-phase between 35–43 GPa [20] and another study

observes hexagonal mercury from 30 GPa onwards (at

room temperature) [21]. The ground-state volume of the

hcp phase is calculated to be 22.37 Å3 per atom, which

compares very well to an estimate given by ref. [22]

(V0 = 22.5 Å3/atom). Our bulk modulus of 49.1 GPa is,

however, severely underestimated compared to experiment

(B = 78 GPa [22]), but somehow better than in other

theoretical work [16, 19]. Moreover, the cohesive energy is

not very well described by LDA if compared to the

incremental result by Gaston et al. (-0.813 eV [19]).

Looking at the properties at significantly higher pressures

above the transition (40.5 GPa), the values derived for the

lattice constants (a = 2.810 Å, c = 4.866 Å, c/a = 1.732)

are in excellent concordance with the experiment by

Takemura [20] (see Table 1), as is the unit-cell volume.

Furthermore, the behavior of the lattice parameters and unit-

cell volume with increasing pressure agree very well with a

recent theoretical study [24]. The author’s results at around 40

GPa are estimated from their graphs and can be seen in

Table 1. The rather high c/a-ratio is confirmed as well.

It should be mentioned that according to our calcula-

tions, the fcc structure is extremely close to b- and c-Hg in

the transition region between the two phases, Fig. 3. This

can also be gathered from the extremely similar ground-

state properties of c-Hg and the fcc arrangement (compare

Tables 1, 3), suggesting a rather small distortion of the c-

phase with respect to the fcc structure. The respective

transition pressure for the hypothetical b-Hg to fcc transi-

tion is 12.2 GPa. Hence, from a theoretical point of view, a

fcc high pressure form of mercury cannot be ruled out. In

contrast, the bcc arrangement is rather high in energy

compared to all other structures and therefore can be

disregarded as a high-pressure phase for mercury. This is

also evident from the rather large nearest neighbor distance

compared to the other structures as shown in Table 4.

4 Summary and conclusion

In a first attempt, we tried to describe pressure-induced

phase transitions in solid mercury at the zero Kelvin line

using LDA. The results clearly show that there are many

open questions, and the phase diagram for solid mercury is

to our opinion still not well understood, especially at very

low temperatures. More experimental and accurate theo-

retical studies (including spin-orbit effects) are required for

a complete description of mercury in the solid state. Hence,

the accurate description of mercury from the dimer [52] to

clusters [30] and finally the solid and liquid phase remains

an unresolved challenge to electronic structure theory.
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